2.5D face recognition using Patch Geodesic Moments

نویسندگان

  • Farshid Hajati
  • Abolghasem A. Raie
  • Yongsheng Gao
چکیده

In this paper, we propose a novel Patch Geodesic Distance (PGD) to transform the texture map of an object through its shape data for robust 2.5D object recognition. Local geodesic paths within patches and global geodesic paths for patches are combined in a coarse to fine hierarchical computation of PGD for each surface point to tackle the missing data problem in 2.5D images. Shape adjusted texture patches are encoded into local patterns for similarity measurement between two 2.5D images with different viewing angles and/or shape deformations. An extensive experimental investigation is conducted on 2.5 face images using the publicly available BU-3DFE and Bosphorus databases covering face recognition under expression and pose changes. The performance of the proposed method is compared with that of three benchmark approaches. The experimental results demonstrate that the proposed method provides a very encouraging new solution for 2.5D object recognition. Crown Copyright & 2011 Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Face Recognition using Patch Geodesic Derivative Pattern

In this paper, a novel Patch Geodesic Derivative Pattern (PGDP) describing the texture map of a face through its shape data is proposed. Geodesic adjusted textures are encoded into derivative patterns for similarity measurement between two 3D images with different pose and expression variations. An extensive experimental investigation is conducted using the publicly available Bosphorus and BU-3...

متن کامل

Pose - Invariant Multimodal ( 2 D + 3 D ) Face Recognition using Geodesic Distance Map

In this paper, an efficient pose-invariant face recognition method is proposed. This method is multimodal means that it uses 2D (color) and 3D (depth) information of a face for recognition. In the first step, the geodesic distances of all face points from a reference point are computed. Then, the face points are mapped from the 3D space to a new 2D space. The proposed mapping is robust under th...

متن کامل

2.5D Elastic graph matching

1077-3142/$ see front matter 2011 Elsevier Inc. A doi:10.1016/j.cviu.2010.12.008 ⇑ Corresponding author. E-mail addresses: [email protected] (S imperial.ac.uk (M. Petrou). In this paper, we propose novel elastic graph matching (EGM) algorithms for face recognition assisted by the availability of 3D facial geometry. More specifically, we conceptually extend the EGM algorithm in order to...

متن کامل

Face recognition in 2D and 2.5D using ridgelets and photometric stereo

A new technique for face recognition – Ridgefaces – is presented. The method combines the well-known Fisherface method with the ridgelet transform and high-speed Photometric Stereo (PS). The paper first derives ridgelet projections for 2D/2.5D face images before the Fisherface approach is used to reduce the dimensionality and increase the spread of the resulting feature vectors. The ridgelet tr...

متن کامل

Hybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition

Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2012